

Characterisation of European CO2 storage

Storage feasibility workflow Rob Arts

Kick-off meeting Stakeholder Workshop September 24, 2013

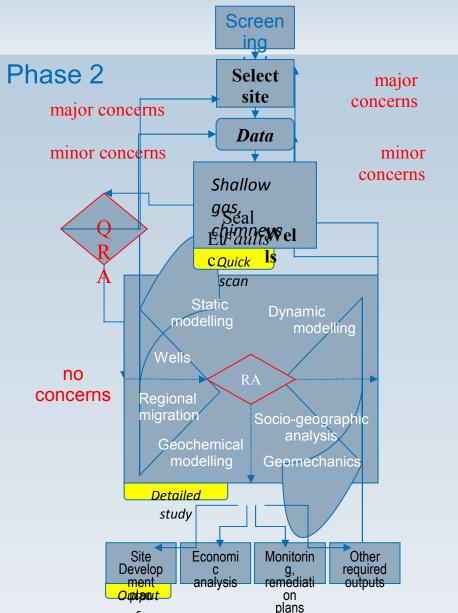
Site Characterisation

- Multidisciplinary approach
 - Geology, geophysics, geochemistry, geomechanics, ...
- Many links between expertises
 - Example: reservoir engineering & geomechanics, through pressure
 - Storage risks often fully defined only by combining multiple expertise areas
 - Storage Directive aspects also addressed by combining results from several disciplines
- Clarify links
 - To render site characterisation work more efficient and effective

SiteChar workflow

Risk driven

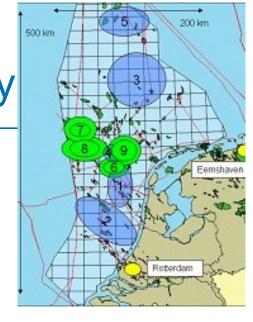
- Site characterisation is about understanding the risks of storing CO2 at specific site
- Risks mitigated through
 - Injection strategy
 - Site design
 - Monitoring plan
 - Contingency (corrective) measures plan
- Residual risks
 - After all mitigation measures
 - Thresholds defined by operator, competent authority
- Key Performance Indicators
 - Monitored during operation
 - Trigger additional monitoring, corrective measures

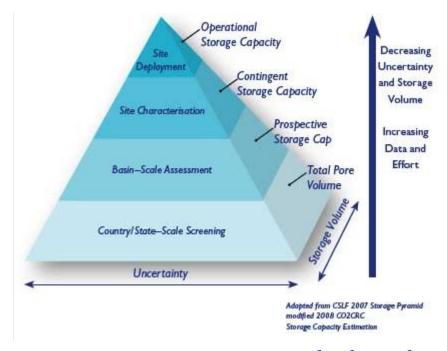


Site characterisation study

Site characterisation workflow

- Aligned with EU Storage Directive
- Tested and improved in five site studies in the SiteChar project

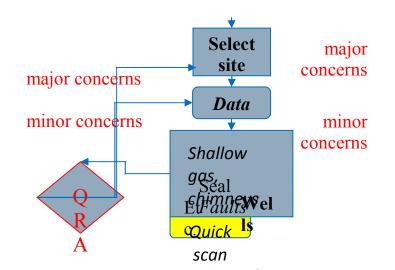

Phase 1



Workflow elements: screening study

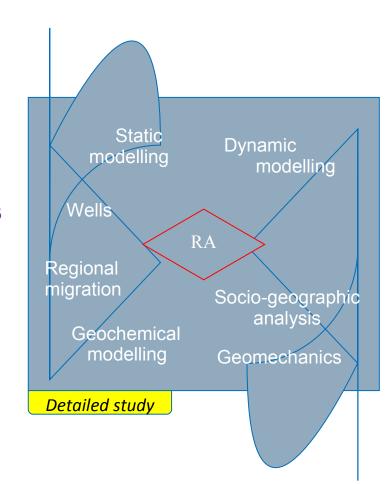
Regional screening study

- High-level screening of potential sites
- Limited site data
- Criteria: (example list)
 - Total storage capacity
 - Injection rate
 - Distance
 - Availability
 - Surface use



Preparation

- Collect all available data
- 2. Quick analysis of data
 - Experts to define risks and potential show stoppers
- 3. Qualitative risk analysis
 - All expertises
 - Not necessarily integrated yet
 - Input: results from quick analysis
 - Output: first version of ranked risk matrix



Example of ranked risk matrix

Detailed study

- Static model building, geomechanical analysis, dynamic (injection and flow) modelling, etc.
- Focus is on most important risks
- Links / interfaces and feedback loops between disciplines
- Work towards permit deliverables
 - Site characterisation is not a study of site geology, of reservoir behaviour, of largescale flow...
- Site characterisation is a study to produce input for a Stakeholder workshap Captember 24 2013

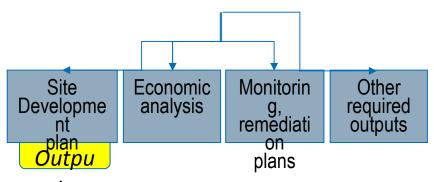
- Risk matrix focuses the site characterisation work
 - Highest risks most emphasis
 - Define severity and probability more precisely
 - Risk mitigation options
 - E.g., injection scenario definition
 - Continuous risk assessment
 - New risks may be

	Very high	0	0	0	0	0
Probability	High	0	2	4	2	0
	Medium	0	4	18	8	0
	Low	0	3	20	13	0
	Very low	0	0	4	1	0
		Very low	Low	Medium	High	Very high
		Severity				

Example of risk matrix

- Injection, plume migration*
 - Pressure limits due to reservoir and cap rock strength; fault reactivation (geomechanics)
 - Near-well pressures, CO2 migration and pressure distribution in reservoir, number and location of wells required to reach target rate (reservoir engineering)
 - Location of legacy wells and risk when in contact with CO2, location of current production wells (well integrity)
 - Impact of potential large-scale migration if CO2 plume migrates out of reservoir (migration analysis)
 - History match leads to updates to static model (reservoir engineering)
- Iterative approach is required to find optimum solution

* List is of course incomplete!



- Risk assessment: a continuous process
 - Improved understanding of risks through detailed study
 - Identification of new risks
 - Mitigation of risks through site design and monitoring
- Close, regular contact with Competent Authority
 - Improve CA's understanding of site and the CCS project
 - Ensure site performance meets CA standards
 - Important especially for early CCS projects

- When all risks sufficiently characterised
 - Use results to write permit application
 - Site development plan
 - Monitoring plan
 - Corrective measures plan
 - Environmental impact assessment (outside focus of SiteChar)
 - Economic analysis (cost of project)

Conclusion

SiteChar workflow

- Describes tasks, flow of work to address EU Storage Directive
- Highlights dependencies among various disciplines in site characterisation team

Key findings

- Site characterisation is risk based; it is of key importance to continuously update the risk matrix during the site characterisation
- Regular contact with the competent authority is strongly recommended
- The characterisation team should be aware of the links between the areas of expertise and the iterative nature of the work

The workflow is available at http:// www.sitechar-co2.eu/FileDownload.aspx?ldFile=605&From=Publicat

